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Nonclassical Properties of Orthonormalized
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In this paeer, the completeness of th@rthonormalized eigenstates of the operator

(ag T(Ng))“(k > 3) is proved. We introduce a new kind of higher order squeezing and
an antibunching. The properties of thith-order squeezing and the antibunching effect

of thek states are investigated. The result shows that these states may form a complete
Hilbert space, and thilth order M = (m+ 1/2)k;m =0, 1, 2,...] squeezing effects

exist in all of thek states wherk is even. There is the antibunching effect in all of the
states.

KEY WORDS: operator eqf(Nq))k; orthonormalized eigenstates; completeness;
higher order squeezing; antibunching effect.

1. INTRODUCTION

The coherent states introduced by Glauber (1963) are eigenstates of the boson
annihilation operatoa, and have widespread applications in the field of physics
(Ali et al, 2000; Klauder and Skagerstam, 1985; Perelomov, 1986; Zébalg
1990a). The even and odd coherent states (Dodehal;, 1974), which are two
orthonormalized eigenstates of the squafref the operatoa, play an important
role in quantum optics (Hillery, 1987; Xia and Guo, 1989;zBkét al,, 1992).

Thek orthonormalized eigenstates of thi powerak(k > 3) of the operatoa
were constructed by us and applied to quantum optics¢Baly 1991, 1992). The
notion of coherent states was extendedtcoherent states (Biedenharn, 1989),
which are eigenstates of theboson annihilation operateg. Theg-coherent states
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were well studied and applied widely to quantum optics and mathematical physics
(Biedenharn, 1989; Baek, 1991; Chaichiaat al, 1990; Gray and Nelson, 1990;
Solomon and Katriel, 1990). The even and agddoherent states, defined as two
orthonormalized eigenstates of the sqL@ref the operatoey, have nonclassical
effects (Wang and Kuang, 1992). Moreover, kherthonormalized eigenstates of
the kth powerag were well investigated by Kuanet al. (1993) and applied to
quantum optics by us (Wargj al,, 1995).

Recently there has been much interest in the study of nonlinear coherent states
called f -coherent states (Man'kat al., 1997), which are eigenstates of the annihi-
lation operator f (n) of f-oscillators, wheref (n) is an operator-valued function
of the boson number operatorA class off -coherent states can be realized phys-
ically as the stationary states of the center-of-mass motion of a trapped ion (Matos
Filho and Vogel, 1996). Théd -coherent states exhibit nonclassical features such
as squeezing and self-splitting. Subsequently, the even and odd nonlinear coher-
ent states, which are two orthonormalized eigenstates of the scuigre)? of
the operatoaf(n), were constructed and their nonclassical effects were studied
(Mancini, 1997; Sivakumar, 1998). Based on this work, kherthonormalized
eigenstates of thkth power @q f(Nq))k (k > 1) were construced and their some
properties were discussed by Liu (2000). At this stage a natural question arises:
whether thek eigenstates could construct a complete Hilbert space, i.e., whether
they could be used as a representation.k-er3, are they classical or nonclassi-
cal? Based on Liu’s work (Liu, 2000), in this paper we prove the completeness of
thek eigenstates of the operatay, (Nq))k (k > 3). We introduce a new kind of
higher order squeezing and an antibunching, and study the nonclassical properties
of thek eigenstates, including higher order squeezing and the antibunching effects.

2. COMPLETENESS OF THE k ORTHONORMALIZED
EIGENSTATES OF (aq f (Ng))*

The g-boson annihilation operatay, creation operatoaa’, and number
operatorN, satisfy the quantum Heisenberg—Weyl algebra:

aqay —qajaq =q ", 1)

[Ng,agl = —aq,  [Ng,8q] = &, )

with g is real and positive. The operataag, a;, andNg act in a Hilbert space
with the basign) (n =0, 1, 2,...), such that

(&))"
0) =0, = 0), 3
agl0) ) JW' ) 3)

where theg-factorial [n]! is given by the relation
(n! =[n][n—1]---[1], [O]' =1, 4)
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and the functionr] is defined as:

qn _ q—n
[n] = W (5)

From above it follows that

gy =v[nin-1, ajn=+In+1in+1), Ngn)=nn). (6)

Note that p] is invariant undelq < 1/q. For the case of physical relevance, we
reasonably choose€ q < 1. Therefore, it is always true that][> n.

Thek orthonormalized eigenstates of the operadgif(Ng))* = A (here and
henceforttk > 3; we do not indicate it in the following) with the same eigenvalue
o are (Liu, 2000)

akn-H

i =% 2 e s

whereo is a complex number, angl=0, 1, 2,...,k — 1. C; are normalized
factors, andf is chosen to be real and nonnegative:

f(kn+ j) = f(kn+ j)f(kn+j —1)--- f(1), f(O)!=1. @8)

It is easy to check that for the same valuekofthe k states given by (7) are
orthogonal to each other with respect to the subsgriptet x = |«|?, using the
normalized conditions of the states given by (7), we have (Liu, 2000)

kn+j —172
C = (Ax, 1)) V2 = [ X ] ©

+ ) = 1¥jk (7

Z [kn=+ ] f(kn+ j)N?
In particular, fork = 1, from (7) and (9) we have

|2n
ol D [Z[n]'(f(n)')} > T = e 00

The states are eigenstates of the opertd(N,) = A. Obviously, this is a natural
generalization of the notion of -coherent states in thg-deformed situation.
Therefore, we call, the statgs, f)q as theq — f-coherent states (Liu, 2000).

Now, the question that concerns us is whethekibtates given by (7) could
construct a complete Hilbert space, i.e., whether they could be used as a repre-
sentation. In order to construct the completeness formula df gtates, we use
the density operator method (Hao, 1993). We define the density operator (i.e., the
density matrix) of the statgkn+ j) as

pj =Y _P(kn+ j)kn+ j)kn+ j|, (11)
n=0
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whereP(kn+ j) = [P(kn+ j, @) d?« is the probability distribution of thekf +
j)th statelkn + j) appearing in the state; )y in which

P(kn+ | KN+ Y2 = —— o 12

(kn+ j, o) = (kn+ jlyj)kl” = A () Tkn+ JR(T(n £ )02 (12)
Thus we have

7t=) P Hkn+ j)lkn+ j)kn+ j]. (13)

n=0

Therefore, the completeness formula of kietates given by (7) can be written in
the following form:

Zp /d o [kl = 1. (14)
The proof of (14) is

k—1
Zp;1/d2a|wj>k~k<w,-|
j=0

o0 o0 1
_ -1
= . ”l ZZ\/[km+j]![kn+J]!f(km+j)!f(kn+j)!

=0 m=0 n=0

X

) kmj  x(kntj)
d¢ ————|km—+ j)(kn+ j|
/ Aj(la?) i

T
N

d (r2)knts s
/r rAi(rz)[kn+j]!(f(kn+j)!)2| n+ j)kn+j|

Il
=
iR
=
A NgE
N
B

Il
o

?‘T f—
=

Mg

= ,o] P(kn+ j)lkn+ jy{kn+ j|

Il
o
=]
Il
o

lx —
=

00

PY(km+ j)lkm+ j)(km+ j| x Y P(kn+ j)lkn+ j)kn+ j|

m=0 n=0

Il
o

(15)

I
2
el
El
I
P

=]
Il
o

wherex = r exp(0) andd?a = r dr d6. Therefore, the linear combination of the
k states may form a complete representation, i.e., they can be used as a represen-
tation. For example, in this representation, thef -coherent states (10) may be
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expressed as
M 2y g o
|, T |:Z [n]( f(n)|)2j| ; Aj (el ) k- (16)

3. HIGHER ORDER SQUEEZING OF THE ORTHONORMALIZED
EIGENSTATES OF (aq f (Ng))¥)

With the development of techniques for making higher order correlation mea-
surements in quantum optics, it is natural to turn attention to the higher order
squeezing and antibunching effects of the radiation field. In 1990, Zhaag
defined the higher order squeezing of a single mode of radiation field (Zhang
et al,, 1990b). In analogy, we introduce a higher order squeezing in terms of the
guantum-analogue quadrature Hermite operatéi@v) andWs(M):

Wi (M) = (AT + AMY/2, wy(M) =i (A" — AV /2, (17)

It can be proved that the operatdn§ (M) andW,(M) satisfy the commutation
relation

[Wi(M), Wa(M)] = (i/2)[AM, AT"], (18)

and the uncertainty relation
(AWA) - (AW)?) = oI([AY, AT )P (19
A state is said to be squeezed to ordierf
(AW — ZHIAY, A™I< 0 (=1,2) (20)

From (17) and (20), we can see that it is the higher order squeezing defined by
Zhanget al.(1990b) wherg — 1 andf(n) — 1. Therefore, it is formally similar
to that of the higher order squeezing defined by Zheingl. (1990b). This kind
of higher order squeezing is a natural generalization of the higher order squeezing
defined by Zhangt al. We call it as theMth-order squeezing effect.

Now we study the properties of thédth-order squeezing for tHeeigenstates
given by (7) in following four cases.

3.1. WhenM =km(m=1,2,3,...), for Even and Odd k

In this case, for all of the states given by (7), using relations (Liu, 2000)

Ak = Y kWil = 8ij, (21)
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we have

k(l/jj |A+2M |wJ)k — r2kmefi2km(9’ k<1//J |A2M|1pj>k — r2kmei2kr’rv’
(22)

AT =1 me ™ ™ (g AM g =rRmER™,(23)

k(W AT AM )y = 2, (24)
wherea = r exp(0). Substituting (22)—(24) into (20), for tHestates, it reads

1 )

k(W (AW )k — ZIk(lﬁj AY, Ay =0 (=1,2), (25)
which indicates that thk eigenstates of (7) are all minimum uncertainty states of
the operator®V; (M) andW,(M) (M = km,m =1, 2, 3,...) defined by (17).

3.2. WhenM =km+i(m=0,1,2,...;i =1,2,...,k— 1), for Odd k

Under this condition, for ak eigenstates of (7), we have

k@ AT [k = k@ TAM 19k = (W5 AT 19 )k = k(W1 AM [ )k = O.

(26)
Using relation (Liu, 2000)
Allyolvok = ' AP A ik (1 =1,2,...,K), (27)
we obtain
(sl AT AV yrg) = r2™D A /A, (S=0,1,2,...,1 — 1), (28)
k(U AT AV ) = r26MDA A (t=i,i 41, k= 1) (29)
Thus, for the stateg/s)k (5S=0,1, 2,...,i — D andjyi((t =i,i +1,..., k—
1), we have

1 M 1 )
k(Wsl(AWL)?|rs)k — Z|k(¢s|[AMr AT s\l = érz(kMI)Ak—i+S/ASv (30)

1 M 1 :
k(W (AW [P )k — Z|k<1/ft|[AM, AT Ykl = Erz“m*"At_i/At. (31)

In order to check whether (30) and (31) satisfy (20), we need to study the values of
Aj(j=0,1,2,...,k—1)intheregionof = |¢| > 0.As[n] > [n— 1] > 1for
allvalues ofywhenn > 0 according to (8) and is chosen to be nonnegative, from

(9) it can be seenthaj(r?) > 0(j =0, 1, 2,...,k — 1) inthe regiom = |«| >

0. Thentheright-hand sides of (30) and (31) are larger than zero. Therefore (30) and
(31) do not satisfy (20), in other words, none of theigenstates given by (7) ex-
hibits Mth-order M = km+i;m=0,1,2,...;i =1,2,...,k — 1) squeezing
effect in these conditions.
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3.3. WhenM = (m+1/2k(m=0,1,2,...), for Evenk
In this case, we have

2M s :
k(‘(//] |A+ |1/[j >k = (2m+1)k e |(2m+1)k9, k<w] |A2M |1//.J >k =r (2m+1)k e|(2m+1)k0’
(32)

WA [ = (W |AM [ i = 0. (33)
Making use of (27), we get
k(US| AT AM gl = T@T DR A s/ As (S=0,1,2,...,k/2—1), (34)
k(U AT AM gy = r@ORA o A (t =k/2,k/241, ..., k—1).

35
Consequently, for the stategs)k (S=0, 1,..., k/2 — 1), we find >
k(Wsl(AWL[Prshk — %|k<ws|[AM, A T[Sl
= ZH Ao/ As + cos((an + 10)), (36)
and for the stateg/ )k (t = k/2,k/2+1,...,k — 1), we find
k(Y (AW |9 ) — %|k<1/ft|[AM, A T[]
_ Lremi a0 A+ cos((@n + 1k6)). 37)

2
According to (36) and (37), the conditions which ensure the existence dMthe
orderM = (m+ 1/2)k, m= 0, 1, 2,...,] squeezing effectin the statiess) (S =
0,1,2,...,k/2—=1)and|y)x (t = k/2,k/2+1,...,k — 1) are, respectively,

Av2ss/As + cog(2m + 1)k6} < 0, (38)
Ac_j2/ A + cod(2m + 1)k} < O. (39)

Choosed = 7 /{(2m + 1)k}, so that co§2m + 1)k6} = —1. From (7), we have
Ayj2+s/As < 1L whenr = |a| < 1. Thus, (38) holds for < 1. Fork > 3, in the
regions ofr > 1, there surely exist such valuesrothat A;_y/>/A; < 1. There-
fore, (39) holds. In summary, there existéth-order M = (m+ 1/2)k;m =
0, 1, 2,...] squeezing effect among thkeeigenstates given by (7) for evén

3.4. WhenM =km+i(m=0,1,...;i =1,2,...,k/2—1,k/24+1,...,
k — 1), for Evenk

With the above discussion, it can be proved that in this case none &f the
eigenstates given by (7) has thgh-order squeezing effect.
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4. QUANTUM ANALOGUE OF ANTIBUNCHING FOR
THE k EIGENSTATES OF THE OPERATOR ( & f (Ng))X

In analogy with the definition of antibunching (Walls, 1983) for photon
statistic properties of the radiation field, we introduce the second-order qguantum-
correlation function for the states given by (7) as

k(0 LA A2y )i
k(W | AT ALY )R

The stategyj) are said to have antibunching effectg‘f)(O) < 1. From (40),
we can see that it is the antibunching effect of a light field (Walls, 1983) when
g — 1 and f(n) — 1. Therefore, this kind of antibunching effect is a natural
generalization of the antibunching effect of a light field. It is formally similar to
that of the antibunching effect of a light field (Walls, 1983).

Now we study the antibunching effect for thesigenstates given by (7).

Using (27) and (40), for thie states given by (7), we obtain

(2)( )_ k(Wol AT A2 o) _ _ AcA2 41)
k(Wol AT Alro)2 AL

KV AT A AdAC

g?(0) = (1=0,1,2,...,k—1). (40)

(2) — —=, 42
O = A AnE = R )
2) 1ﬁ2|AJr A2|¢2> _ Aj—2A] =213 k-1 43
O ia Ay Ty (T

Evidently, the following relation existE[ -0 g(z)(O) =1
Substituting (9) into (41), it foIIows that
(F(kn))~2(f (km—kn+k —2)1)-2)
Zm=0{2“=0 [knl[km— kn+ k — 2]! }
(f(kn+k — )N 2(f(km—kn+ Kk — 1)) 2
k o0 km
X Zm=°{2“=° [kn+ k — 1][km— kn+ k — 1] }X
= p1(X)/{x“p2(x)}, (44)
wherex = r? = |a|2. Whenf (i) < f(i + 1), fork > 3, we have
m 1
2o [knl'( f (kn)!)2[km — kn+ k — 2]!(f (km — kn + k — 2)1)2

1
g ; [kn+ k — 1)'(f(kn+ k — 1)1)2[km — kn + k — 1]'(f (km— kn+ k — 1)1)2
(45)

(2) (0) =

and thusp;(X) > @o(x) for x > Owhenf (i) < f(i + 1). Henceg(z)(O) > 1when
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X < 1. However, wherx > 1 andf(i) < f(i 4+ 1), there surely exist values &f
[e.g.,x* > 1(X)/¢2(X)] for which the following relation holds:

90(0) = pa(x)/ X @a(3)} < 1. (46)
Substituting (9) into (42), we have

o [wm (Fkn+ DN 2(f(km—kn+k—1))=2)
Xk2m=°{ =0 " [kn+ 1J[km—kn+K—1]! } ‘
o [wm GG 2(fkm—Kkn) 2| _
2Zmeo {Z“O [knl![km — kn]! }Xk
= X*p3(X)/@a(X). (47)

Obviously, whenf (i) < f(i + 1), we have

g?(0) =

m 1
2o [kn+ 1](f (kn+ 1)1)2[km— kn + k — 1])(f (km — kn+ k — 1)1)2

m 1
) § [kn]!( f (kn)!)2[km — kn]!( f (km— kn)!)2’

(48)

S0 thatps(X) < @a(X). Thereforeggz)(O) < 1 whenxk < ©a(X)/p3(X).
From (9) and (43), we obtain

o0 m (fkn+j =2 2(f(km—kn+ )% m
Zm—o{ n=0 [kn+ j — 2]'[km—kn+ j]! }X
o m (Fkn+j—DN2(fkm—kn+j—1))~2)
Zm=0{2n=0 (kn+ ] — 1)km—kn+ ] — 1] }Xk
(j=2,3,...,k=1). (49a)

g?(0) =

Whenf(i) < f(i + 1), we have

m+1

o0 km
©) 2Zm-0 [i —2]'(F (G —2)H2H1X f(j)!)zx
970 < m+1
ZOO
m=0 lkm+ j — 1]!I(f(km+ j — 1)1)2)2

1 N .
_ TICT T — 2 —aye =™+
(T — 101 — 1922
(i=23,..., k—1). (49b)
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Obviously,
] 00 km B
)I(lTO mEzo[m +1x"=[1] = 1. (50)

Therefore, from (49a), (49b), and (50), we obtain

[ =16 -1
ICEGID20 —21(F () —2))?
[i —10f%(G -1) ,

[i112())

It can be seen that there is the antibunching effect in the siatas(j = 2, 3,.. .,
k—1)whenx — Oandf(j — 1) < f(j).

We sum up the above results and obtain that in some different ranges of
x = |a|?, there is the antibunching effect in all of tkestates given by (7) when
f@i) < f(i+1).

. @)
im g0

5. CONCLUSIONS

In this paper, the completeness of therthonormalized eigenstates of the
operator § f(Nq))k(k > 3) is proved. We defined a new kind of higher order
squeezing and antibunching effect, and studied the nonclassical properties of the
k eigenstates, including higher order squeezing and antibunching effect. from the
above discussions, for theeigenstates of the operatar, (Nq))", we come to
the following conclusions:

(a) Their linear combination may form a complete representation.

(b) For oddk, none of them has the higher order squeezing effect.

(c) For odd and evet, all of them are the minimum uncertainty states
of the operatorVy(M) andW,(M) (M = km, m =1, 2, 3,...) defined
by (17).

(d) Foreverk, whenM = (m+1/2)k(m=0, 1, 2,...), all of them exhibit
the Mth-order squeezing effect.

(e) There is the antibunching effect in all of theigenstates.
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