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In this paper, the completeness of thek orthonormalized eigenstates of the operator
(aq f (Nq))k(k ≥ 3) is proved. We introduce a new kind of higher order squeezing and
an antibunching. The properties of theM th-order squeezing and the antibunching effect
of thek states are investigated. The result shows that these states may form a complete
Hilbert space, and theM th order [M = (m+ 1/2)k; m= 0, 1, 2,. . .] squeezing effects
exist in all of thek states whenk is even. There is the antibunching effect in all of the
states.
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1. INTRODUCTION

The coherent states introduced by Glauber (1963) are eigenstates of the boson
annihilation operatora, and have widespread applications in the field of physics
(Ali et al., 2000; Klauder and Skagerstam, 1985; Perelomov, 1986; Zhanget al.,
1990a). The even and odd coherent states (Dodonovet al., 1974), which are two
orthonormalized eigenstates of the squarea2 of the operatora, play an important
role in quantum optics (Hillery, 1987; Xia and Guo, 1989; Buˇzek et al., 1992).
Thek orthonormalized eigenstates of thekth powerak(k ≥ 3) of the operatora
were constructed by us and applied to quantum optics (Sunet al., 1991, 1992). The
notion of coherent states was extended toq-coherent states (Biedenharn, 1989),
which are eigenstates of theq-boson annihilation operatoraq. Theq-coherent states
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were well studied and applied widely to quantum optics and mathematical physics
(Biedenharn, 1989; Buˇzek, 1991; Chaichianet al., 1990; Gray and Nelson, 1990;
Solomon and Katriel, 1990). The even and oddq-coherent states, defined as two
orthonormalized eigenstates of the squarea2

q of the operatoraq, have nonclassical
effects (Wang and Kuang, 1992). Moreover, thek orthonormalized eigenstates of
the kth powera2

q were well investigated by Kuanget al. (1993) and applied to
quantum optics by us (Wanget al., 1995).

Recently there has been much interest in the study of nonlinear coherent states
called f -coherent states (Man’koet al., 1997), which are eigenstates of the annihi-
lation operatora f (n) of f -oscillators, wheref (n) is an operator-valued function
of the boson number operatorn. A class of f -coherent states can be realized phys-
ically as the stationary states of the center-of-mass motion of a trapped ion (Matos
Filho and Vogel, 1996). Thef -coherent states exhibit nonclassical features such
as squeezing and self-splitting. Subsequently, the even and odd nonlinear coher-
ent states, which are two orthonormalized eigenstates of the square (a f (n))2 of
the operatora f (n), were constructed and their nonclassical effects were studied
(Mancini, 1997; Sivakumar, 1998). Based on this work, thek orthonormalized
eigenstates of thekth power (aq f (Nq))k (k ≥ 1) were construced and their some
properties were discussed by Liu (2000). At this stage a natural question arises:
whether thek eigenstates could construct a complete Hilbert space, i.e., whether
they could be used as a representation. Fork ≥ 3, are they classical or nonclassi-
cal? Based on Liu’s work (Liu, 2000), in this paper we prove the completeness of
thek eigenstates of the operator (aq f (Nq))k (k ≥ 3). We introduce a new kind of
higher order squeezing and an antibunching, and study the nonclassical properties
of thek eigenstates, including higher order squeezing and the antibunching effects.

2. COMPLETENESS OF THE k ORTHONORMALIZED
EIGENSTATES OF (aq f (Nq))k

The q-boson annihilation operatoraq, creation operatora+q , and number
operatorNq satisfy the quantum Heisenberg–Weyl algebra:

aqa+q − qa+q aq = q−Nq , (1)

[Nq, aq] = −aq, [Nq, a+q ] = a+q , (2)

with q is real and positive. The operatorsaq, a+q , and Nq act in a Hilbert space
with the basis|n〉 (n = 0, 1, 2,. . .), such that

aq|0〉 = 0, |n〉 = (a+q )n

√
[n]!
|0〉, (3)

where theq-factorial [n]! is given by the relation

[n]! = [n][n− 1] · · · [1], [0]! = 1, (4)
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and the function [n] is defined as:

[n] = qn − q−n

q − q−1
. (5)

From above it follows that

aq|n〉 =
√

[n]|n− 1〉, a+q |n〉 =
√

[n+ 1]|n+ 1〉, Nq|n〉 = n|n〉. (6)

Note that [n] is invariant underq↔ 1/q. For the case of physical relevance, we
reasonably choose 0< q ≤ 1. Therefore, it is always true that [n] ≥ n.

Thek orthonormalized eigenstates of the operator (aq f (Nq))k ≡ Ak (here and
henceforthk ≥ 3; we do not indicate it in the following) with the same eigenvalue
αk are (Liu, 2000)

|ψ j (α, f )〉k = Cj

∞∑
n=0

αkn+ j

√
[kn+ j ]! f (kn+ j )!

|kn+ j 〉 ≡ |ψ j 〉k (7)

whereα is a complex number, andj = 0, 1, 2,. . . , k− 1. Cj are normalized
factors, andf is chosen to be real and nonnegative:

f (kn+ j )! = f (kn+ j ) f (kn+ j − 1) · · · f (1), f (0)! = 1. (8)

It is easy to check that for the same value ofk, the k states given by (7) are
orthogonal to each other with respect to the subscriptj . Let x = |α|2, using the
normalized conditions of the states given by (7), we have (Liu, 2000)

Cj = {Aj (x, f )}−1/2 =
[ ∞∑

n=0

xkn+ j

[kn+ j ]!( f (kn+ j )!)2

]−1/2

(9)

In particular, fork = 1, from (7) and (9) we have

|ψ0(α, f )〉1 =
[ ∞∑

n=0

|α|2n

[n]!( f (n)!)2

]−1/2 ∞∑
n=0

αn

√
[n]! f (n)!

|n〉 ≡ |α, f 〉q. (10)

The states are eigenstates of the operatoraq f (Nq) = A. Obviously, this is a natural
generalization of the notion off -coherent states in theq-deformed situation.
Therefore, we call, the states|α, f 〉q as theq − f -coherent states (Liu, 2000).

Now, the question that concerns us is whether thek states given by (7) could
construct a complete Hilbert space, i.e., whether they could be used as a repre-
sentation. In order to construct the completeness formula of thek states, we use
the density operator method (Hao, 1993). We define the density operator (i.e., the
density matrix) of the state|kn+ j 〉 as

ρ j =
∞∑

n=0

P(kn+ j )|kn+ j 〉〈kn+ j |, (11)
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whereP(kn+ j ) = ∫P(kn+ j , α) d2α is the probability distribution of the (kn+
j )th state|kn+ j 〉 appearing in the state|ψ j 〉k in which

P(kn+ j , α) = |〈kn+ j |ψ j 〉k|2 = 1

Aj (|α|2)

|α|2(kn+ j )

[kn+ j ]!( f (kn+ j )!)2
. (12)

Thus we have

ρ−1
j =

∞∑
n=0

P−1(kn+ j )|kn+ j 〉〈kn+ j |. (13)

Therefore, the completeness formula of thek states given by (7) can be written in
the following form:

k−1∑
j=0

ρ−1
j

∫
d2α |ψ j 〉k·k〈ψ j | = 1. (14)

The proof of (14) is

k−1∑
j=0

ρ−1
j

∫
d2α |ψ j 〉k·k〈ψ j |

=
k−1∑
j=0

ρ−1
j

∞∑
m=0

∞∑
n=0

1√
[km+ j ]![ kn+ j ]! f (km+ j )! f (kn+ j )!

×
∫

d2α
αkm+ jα∗(kn+ j )

Aj (|α|2)
|km+ j 〉〈kn+ j |

=
k−1∑
j=0

ρ−1
j

∞∑
n=0

2π
∫

r dr
(r 2)kn+ j

Aj (r 2)[kn+ j ]!( f (kn+ j )!)2
|kn+ j 〉〈kn+ j |

=
k−1∑
j=0

ρ−1
j

∞∑
n=0

P(kn+ j )|kn+ j 〉〈kn+ j |

=
k−1∑
j=0

∞∑
m=0

P−1(km+ j )|km+ j 〉〈km+ j | ×
∞∑

n=0

P(kn+ j )|kn+ j 〉〈kn+ j |

=
∞∑

n=0

|n〉〈n| = 1, (15)

whereα = r exp(i θ ) andd2α = r dr dθ . Therefore, the linear combination of the
k states may form a complete representation, i.e., they can be used as a represen-
tation. For example, in this representation, theq– f -coherent states (10) may be
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expressed as

|α, f 〉q =
[ ∞∑

n=0

|α|2n

[n]!( f (n)!)2

]−1/2 k−1∑
j=0

A1/2
j (|α|2)|ψ j 〉k. (16)

3. HIGHER ORDER SQUEEZING OF THE ORTHONORMALIZED
EIGENSTATES OF (aq f (Nq))k)

With the development of techniques for making higher order correlation mea-
surements in quantum optics, it is natural to turn attention to the higher order
squeezing and antibunching effects of the radiation field. In 1990, Zhanget al.
defined the higher order squeezing of a single mode of radiation field (Zhang
et al., 1990b). In analogy, we introduce a higher order squeezing in terms of the
quantum-analogue quadrature Hermite operatorsW1(M) andW2(M):

W1(M) = (A+
M + AM )/2, W2(M) = i (A+

M − AM )/2. (17)

It can be proved that the operatorsW1(M) andW2(M) satisfy the commutation
relation

[W1(M), W2(M)] = (i /2)[AM , A+
M

], (18)

and the uncertainty relation

〈(1W1)2〉 · 〈(1W2)2〉 ≥ 1

16
|〈[ AM , A+

M
]〉|2. (19)

A state is said to be squeezed to orderM if

〈(1Wi )
2〉 − 1

4
|〈[ AM , A+

M
]〉| < 0 (i = 1, 2). (20)

From (17) and (20), we can see that it is the higher order squeezing defined by
Zhanget al.(1990b) whenq→ 1 and f (n)→ 1. Therefore, it is formally similar
to that of the higher order squeezing defined by Zhanget al. (1990b). This kind
of higher order squeezing is a natural generalization of the higher order squeezing
defined by Zhanget al. We call it as theM th-order squeezing effect.

Now we study the properties of theM th-order squeezing for thek eigenstates
given by (7) in following four cases.

3.1. WhenM = km (m = 1, 2, 3, . . .), for Even and Odd k

In this case, for all of the states given by (7), using relations (Liu, 2000)

Ak|ψ j 〉k = αk|ψ j 〉k, k〈ψi |ψ j 〉k = δi j , (21)
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we have

k〈ψ j |A+2M |ψ j 〉k = r 2km e−i 2kmθ , k〈ψ j |A2M |ψ j 〉k = r 2km ei 2kmθ ,
(22)

k〈ψ j |A+M |ψ j 〉k = r km e−ikmθ , k〈ψ j |AM |ψ j 〉k = r km eikmθ , (23)

k〈ψ j |A+M
AM |ψ j 〉k = r 2km, (24)

whereα = r exp(i θ ). Substituting (22)–(24) into (20), for thek states, it reads

k〈ψ j |(1Wi )
2|ψ j 〉k − 1

4
|k〈ψ j |[ AM , A+

M
]|ψ j 〉k| = 0 (i = 1, 2), (25)

which indicates that thek eigenstates of (7) are all minimum uncertainty states of
the operatorsW1(M) andW2(M) (M = km, m= 1, 2, 3,. . .) defined by (17).

3.2. WhenM = km + i (m = 0, 1, 2, . . . ; i = 1, 2, . . . , k− 1), for Odd k

Under this condition, for allk eigenstates of (7), we have

k〈ψ j |A+2M |ψ j 〉k = k〈ψ j |A2M |ψ j 〉k = k〈ψ j |A+M |ψ j 〉k = k〈ψ j |AM |ψ j 〉k = 0.
(26)

Using relation (Liu, 2000)

Ai |ψ0|ψ0〉k = αi A−1/2
0 A1/2

k−i |ψk−i 〉k (i = 1, 2,. . . , k), (27)

we obtain

k〈ψS|A+M
AM |ψS〉k = r 2(km+i ) Ak−i+s/AS, (S= 0, 1, 2,. . . , i − 1), (28)

k〈ψt |A+M
AM |ψt 〉k = r 2(km+i ) At−i /At (t = i , i + 1, . . . , k− 1). (29)

Thus, for the states|ψS〉k (S= 0, 1, 2,. . . , i − 1) and|ψt 〈k (t = i , i + 1, . . . , k−
1), we have

k〈ψS|(1W1)2|ψS〉k − 1

4
|k〈ψS|[ AM , A+

M
]|ψS〉k| = 1

2
r 2(km+i ) Ak−i+S/AS, (30)

k〈ψt |(1W1)2|ψt 〉k − 1

4
|k〈ψt |[ AM , A+

M
]|ψt 〉k| = 1

2
r 2(km+i ) At−i /At . (31)

In order to check whether (30) and (31) satisfy (20), we need to study the values of
Aj ( j = 0, 1, 2,. . . , k− 1) in the region ofr = |α| > 0. As [n] > [n− 1] ≥ 1 for
all values ofq whenn ≥ 0 according to (8) andf is chosen to be nonnegative, from
(9) it can be seen thatAj (r 2) > 0 ( j = 0, 1, 2,. . . , k− 1) in the regionr = |α| >
0. Then the right-hand sides of (30) and (31) are larger than zero. Therefore (30) and
(31) do not satisfy (20), in other words, none of thek eigenstates given by (7) ex-
hibits M th-order (M = km+ i ; m= 0, 1, 2,. . . ; i = 1, 2,. . . , k− 1) squeezing
effect in these conditions.
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3.3. WhenM = (m + 1/2)k (m = 0, 1, 2, . . .), for Even k

In this case, we have

k〈ψ j |A+2M |ψ j 〉k = r (2m+1)k e−i (2m+1)kθ , k〈ψ j |A2M |ψ j 〉k = r (2m+1)k ei (2m+1)kθ ,
(32)

k〈ψ j |A+M |ψ j 〉k = k〈ψ j |AM |ψ j 〉k = 0. (33)

Making use of (27), we get

k〈ψS|A+M
AM |ψS〉k = r (2m+1)k Ak/2+S/AS (S= 0, 1, 2,. . . , k/2− 1), (34)

k〈ψt |A+M
AM |ψt 〉k = r (2m+1)k At−k/2/At (t = k/2, k/2+ 1, . . . , k− 1).

(35)

Consequently, for the states|ψS〉k (S= 0, 1,. . . , k/2− 1), we find

k〈ψS|(1W1)2|ψS〉k − 1

4
|k〈ψS|[ AM , A+

M
]|ψS〉k|

= 1

2
r (2m+1)k{Ak/2+S/AS+ cos((2m+ 1)kθ )}, (36)

and for the states|ψ〉k (t = k/2, k/2+ 1, . . . , k− 1), we find

k〈ψt |(1W1)2|ψt 〉k − 1

4
|k〈ψt |[ AM , A+

M
]|ψt 〉k|

= 1

2
r (2m+1)k{At−k/2/At + cos((2m+ 1)kθ )}. (37)

According to (36) and (37), the conditions which ensure the existence of theM th-
order [M = (m+ 1/2)k, m= 0, 1, 2,. . .,] squeezing effect in the states|ψS〉k(S=
0, 1, 2,. . . , k/2− 1) and|ψt 〉k (t = k/2, k/2+ 1, . . . , k− 1) are, respectively,

Ak/2+S/AS + cos{(2m+ 1)kθ} < 0, (38)

At−k/2/At + cos{(2m+ 1)kθ} < 0. (39)

Chooseθ = π/{(2m+ 1)k}, so that cos{(2m+ 1)kθ} = −1. From (7), we have
Ak/2+S/AS < 1 whenr = |α| ≤ 1. Thus, (38) holds forr ≤ 1. Fork ≥ 3, in the
regions ofr > 1, there surely exist such values ofr that At−k/2/At < 1. There-
fore, (39) holds. In summary, there existsM th-order [M = (m+ 1/2)k; m=
0, 1, 2,. . .] squeezing effect among thek eigenstates given by (7) for evenk.

3.4. WhenM = km + i (m = 0, 1, . . . ; i = 1, 2, . . . , k/2− 1, k/2 + 1, . . . ,
k− 1), for Even k

With the above discussion, it can be proved that in this case none of thek
eigenstates given by (7) has theM th-order squeezing effect.
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4. QUANTUM ANALOGUE OF ANTIBUNCHING FOR
THE k EIGENSTATES OF THE OPERATOR ( aq f (Nq))k

In analogy with the definition of antibunching (Walls, 1983) for photon
statistic properties of the radiation field, we introduce the second-order quantum-
correlation function for the states given by (7) as

g(2)
j (0)= k〈ψ j |A+2

A2|ψ j 〉k
k〈ψ j |A+A|ψ j 〉2k

( j = 0, 1, 2,. . . , k− 1). (40)

The states|ψ j 〉k are said to have antibunching effect ifg(2)
j (0) < 1. From (40),

we can see that it is the antibunching effect of a light field (Walls, 1983) when
q→ 1 and f (n)→ 1. Therefore, this kind of antibunching effect is a natural
generalization of the antibunching effect of a light field. It is formally similar to
that of the antibunching effect of a light field (Walls, 1983).

Now we study the antibunching effect for thek eigenstates given by (7).
Using (27) and (40), for thek states given by (7), we obtain

g(2)
0 (0) = k〈ψ0|A+2

A2|ψ0〉k
k〈ψ0|A+A|ψ0〉2k

= A0Ak−2

A2
k−1

, (41)

g(2)
1 (0) = k〈ψ1|A+2

A2|ψ1〉k
k〈ψ1|A+A|ψ1〉2k

= A1Ak−1

A2
0

, (42)

g(2)
j (0) = k〈ψ2|A+2

A2|ψ2〉k
k〈ψ j |A+A|ψ j 〉2k

= Aj−2Aj

A2
j−1

( j = 2, 3,. . . , k− 1). (43)

Evidently, the following relation exists
∏k−1

j=0 g(2)
j (0)= 1.

Substituting (9) into (41), it follows that

g(2)
0 (0) =

∑∞
m=0

{∑m
n=0

( f (kn)!)−2( f (km− kn+ k− 2)!)−2

[kn]![ km− kn+ k− 2]!

}
xkm

xk
∑∞

m=0

{∑m
n=0

( f (kn+ k− 1)!)−2( f (km− kn+ k− 1)!)−2

[kn+ k− 1]![km− kn+ k− 1]!

}
xkm

= ϕ1(x)/{xkϕ2(x)}, (44)

wherex = r 2 = |α|2. When f (i ) ≤ f (i + 1), for k ≥ 3, we have∑m

n=0

1

[kn]!( f (kn)!)2[km− kn+ k− 2]!( f (km− kn+ k− 2)!)2

>
m∑

n=0

1

[kn+ k− 1]!( f (kn+ k− 1)!)2[km− kn+ k− 1]!( f (km− kn+ k− 1)!)2

(45)

and thusϕ1(x) > ϕ2(x) for x > 0 when f (i ) ≤ f (i + 1). Henceg(2)
0 (0) > 1 when
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x ≤ 1. However, whenx > 1 and f (i ) ≤ f (i + 1), there surely exist values ofx
[e.g.,xk > ϕ1(x)/ϕ2(x)] for which the following relation holds:

g(2)
0 (0)= ϕ1(x)/{xkϕ2(x)} < 1. (46)

Substituting (9) into (42), we have

g(2)
1 (0) =

xk
∑∞

m=0

{∑m
n=0

( f (kn+ 1)!)−2( f (km− kn+ k− 1)!)−2

[kn+ 1]![km− kn+ k− 1]!

}
xkm

∑∞
m=0

{∑m
n=0

( f (kn)!)−2( f (km− kn)!)−2

[kn]![ km− kn]!

}
xkm

= xkϕ3(x)/ϕ4(x). (47)

Obviously, whenf (i ) ≤ f (i + 1), we have∑m

n=0

1

[kn+ 1]!( f (kn+ 1)!)2[km− kn+ k− 1]!( f (km− kn+ k− 1)!)2

<
m∑

n=0

1

[kn]!( f (kn)!)2[km− kn]!( f (km− kn)!)2
, (48)

so thatϕ3(x) < ϕ4(x). Thereforeg(2)
1 (0) < 1 whenxk < ϕ4(x)/ϕ3(x).

From (9) and (43), we obtain

g(2)
j (0)=

∑∞
m=0

{∑m
n=0

( f (kn+ j − 2)!)−2( f (km− kn+ j )!)−2

[kn+ j − 2]![km− kn+ j ]!

}
xkm

∑∞
m=0

{∑m
n=0

( f (kn+ j − 1)!)−2( f (km− kn+ j − 1)!)−2

[kn+ j − 1]![km− kn+ j − 1]!

}
xkm

( j = 2, 3,. . . , k− 1). (49a)

When f (i ) ≤ f (i + 1), we have

g(0)
j (0) <

∑∞
m=0

m+ 1

[ j − 2]!( f ( j − 2)!)2[ j ]!( f ( j )!)2
xkm

∑∞
m=0

m+ 1

{[km+ j − 1]!( f (km+ j − 1)!)2}2

<

1

[ j ]!( f ( j )!)2[ j − 2]!( f ( j − 2)!)2

∑∞
m=0[m+ 1]xkm

{[ j − 1]!( f ( j − 1)!)2}−2

( j = 2, 3,. . . , k− 1). (49b)
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Obviously,

lim
x→0

∞∑
m=0

[m+ 1]xkm = [1] = 1. (50)

Therefore, from (49a), (49b), and (50), we obtain

lim
x→0

g(2)
j (0) <

{[ j − 1]!( f ( j − 1)!)2}2
[ j ]!( f ( j )!)2[ j − 2]!( f ( j − 2)!)2

= [ j − 1] f 2( j − 1)

[ j ] f 2( j )
( j = 2, 3,. . . , k− 1). (51)

It can be seen that there is the antibunching effect in the states|ψ j 〉k ( j = 2, 3,. . . ,
k− 1) whenx→ 0 and f ( j − 1)≤ f ( j ).

We sum up the above results and obtain that in some different ranges of
x = |α|2, there is the antibunching effect in all of thek states given by (7) when
f (i ) ≤ f (i + 1).

5. CONCLUSIONS

In this paper, the completeness of thek orthonormalized eigenstates of the
operator (aq f (Nq))k(k ≥ 3) is proved. We defined a new kind of higher order
squeezing and antibunching effect, and studied the nonclassical properties of the
k eigenstates, including higher order squeezing and antibunching effect. from the
above discussions, for thek eigenstates of the operator (aq f (Nq))k, we come to
the following conclusions:

(a) Their linear combination may form a complete representation.
(b) For oddk, none of them has the higher order squeezing effect.
(c) For odd and evenk, all of them are the minimum uncertainty states

of the operatorsW1(M) andW2(M) (M = km, m= 1, 2, 3,. . .) defined
by (17).

(d) For evenk, whenM = (m+ 1/2)k (m= 0, 1, 2,. . .), all of them exhibit
the M th-order squeezing effect.

(e) There is the antibunching effect in all of thek eigenstates.
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Bužek, V. (1991).Journal of Modern Optics38, 801.
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